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ABSTRACT 

We study SU(-) gauge theory on an asymmetric lattice 

using a generalisation of the Twisted Eguchi Kawai model. 

We show that it is possible to remove the large N bulk 

transition by choosing a sufficiently asymmetric lattice and 

hence to study the physical deconfinement transition without 

being affected by the former. Results for N=16 indicate a 

strong first order deconfinement transition. 
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The phase structure of lattice gauge theories provides 

valuable information about their continuum limits. While 

the four dimensional SU(2) and SU(3) theories with the 

standard Wilson action appear to be a single phase systems, 

SU(N) theories with Nz4 with the same action possess a first 

order transition [l]. This is a bulk transition : it does 

not imply deconfinement, but does involve a discontinutity 

in the value of the string tension. To understand the 

nature of this transition it is useful to study a simple 

generalisation of the Wilson action, viz.: 

5 = z&+f-+ -P, f-fPP;: --- (9) 
P 

where U 
P is the standard plaquette variable and trA denotes 

the trace in the adjoint representation. For N=2 and N=3 

one finds 121 lines of first order transitions starting from 

the 8=0 and aA=" axes, meeting at a tricritical point and 

continuing towards the pure Wilson axis Cc?,=O) but 

terminating at a. critical point for some BA>O. An 

extrapolation of this line brings one to the crossover 

region of the pure Wilson theory; thus the latter feels the 

effect of the phase structure of the mixed action theory in 

the form of a rapid crossover. For N_24, however, the line 

of first order transitions crosses the Wilson axis and 

terminates at some BA<O. This shows that the bulk 

transition is an artifact of the Wilson action. Under a 

renormalisation group transformation couplings starting from 
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the vicinity of the Wilson axis would presumably flow around 

the critical endpoint and approach the infrared fixed point 

at B=SA=O. Within the framework of Migdal-Kadanoff 

approximation this has indeed been observed for StJ(2) and 

SD(3) (31. 

At N=m the situation becomes complicated. This is 

because a theory defined with the mixed action of eqn.(l) is 

essentially equivalent to the pure Wilson theory with a 

redefined coupling, as the following simple argument 

indicates: 

Consider the Dyson-Schwinger equations for Wilson loops 

in the theory defined by eqn.(l). For a simple loop the 

equations may be diagramatically written in the standard 

fashion in Figure (1). Here <P> denotes the average 

plaquette expectation value. In deriving eqn. (2) we have 

assumed that the factorisation property of gauge invariant 

variables is exact. Comparing em. (2) with the standard 

Dyson-Schwinger equations for the Wilson theory [4] it is 

clear that the model defined by (1) is equivalent to the 

Wilson model with a coupling S': 

P / T= p-c c-2 PA o+ 

Equation (3) has been also derived in Ref.[S]. 

The above feature of the large N limit is consistent 

with the observation of Bachas and Dashen [61. These 

authors argue that the first order transitions in the B-B, 



-4- FERMILAB-PUB-84/41-T 

plane reflect the presence of non-trivial stable minima of 

the action. Below the line : 

P A + 
N&L p &,+) =o --- (4) 

there are no such stable minima and hence the line of 

transitions must end. It is clear from the above equation 

that the line of transitions receeds to infinity.in the 

(B/N)-B, plane as N goes to infinity. 

Since the simple extension of the Wilson model given in 

em. (1) fails to remove the bulk transition for N=m it is 

important to know whether there are other parametrisations 

which can do the job. The question becomes crucial in the 

study of the deconfinement transition at finite temperature 

t71. SU(2) [8] and SU(3) [9] are known to have second and 

first order deconfining transitions respectively. Recently 

some evidence for a first order transition in SU(4) has been 

reported [lO,ll]. Several arguments in favor of a first 

order transition have been presented [121; the status of 

these arguments ,however, is not very clear. In a previous 

communication [13] we studied the finite temperature SU(m) 

theory using Twisted Eguchi-Xawai methods [14]. We used a 

generalisation of the TEK model to finite temperatures 

proposed in Ref.[lS].(This involves asymmetric twists to 

mimic the effects of an asymmetric box). We found that for 

practical values of No, the temporal extent of the box, the 

bulk transition interferes with the deconfinement 
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transition. Similar behaviour has been found in SU(4) [lo]. 

At the bulk transition the string tension jumps 
Hi-7 

discontinuously, making the confinement length larger,,No, 

(for small No). This induces a spurious deconfinement 

transition [lo]. There has been several other studies of 

the hot TEK model [161 : we believe all of these are plagued 

by the same difficulty. For finite N the bulk transition 

may be avoided by using a mixed action- as done in Ref.1101. 

As explained above, for N=m this is not possible. To 

extract any physical information about deconfinement it is 

absolutely essential to decouple the two transitions. In 

principle this can be achieved by using a very large 

No,thereby pushing the deconfinement transition deep into 

the weak coupling region, while the bulk transition remains 

at intermediate coupling. This, however, appears to be 

totally unpractical. 

In this letter we consider a simple two-parameter 

generalisation of the Wilson action involving different 

couplings for the spatial and temporal plaquettes. This is 

equivalent to a gauge theory on a lattice with different 

lattice spacings in the temporal and spatial directions. If 

the asymmetry parameter 5 (the ratio of spacelike to 

timelike lattice spacings) is large enough one has a box 

whose physical length in the time direction is small 

compared to that in the spatial directions - thus simulating 

finite temperature effects. We construct a hot TEK model 

which is equivalent to the above theory at N=m and study it 
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for N=16 by Monte Carlo simulations. owe indeed find that 

for 521.75 the bulk transition completely disappears. The " 

Wilson line, however, continues to show a discontinuous 

jump, indicating a first order deconfinement transition. 

The bulk transition is thus indeed a lattice artifact : it 

is possible to find an "analyticity strip" by going to a 

larger parameter space involving asymmetric couplings. 

The TEK model is defined by the partition function : 

z= J- 
**=(s) 

s TEJf= - 2 
P>V 

TfPV tr (tip u, uj+.Uv+) +, h.c. 

where the U,,'s are SU(N) matrices and Z PV is a constant 

element in ZN : 

%/4Av = intQer6 ( 3nod Nl 

For a symmetric twist,i.e. 

mp. = I!. cfB1- cbu “v- 
the above model is equivalent , at L==, to the zero 

temperature SU W w-w theory defined in a symme.tric 

periodic box of size L (141. The link variables of the 

field theory, U,(X) are related to the reduce~d variables U,, 
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by: 

where rut.9 are 

Hooft algebra : 

q&x., -9 %x3 y-d+) 
. . . . (8) 

zD(xl 2 ppXh 

For any gauge invariant quantity f(U,,(x)) the following 

traceless SU(N) matrices satisfying the 't 

equivalence holds : 

<J ( qw > 
FIELD 

= (-f (D(x) u@~xJ)> s-. (~9 
?-HEDRY 

l-m 

One way to construct a hot TEK model is to consider 

asymmetric twists 1151 which enables one to go to the N=m 

limit by keeping the temporal extent of the box fixed while 

letting the spatial extents to go to infinity. This type of 

model has been studied in Ref.[l3],[15]and [161. 

Another way to have a finite temperature is to have a 

symmetric box but asymmetric couplings in the spatial and 

temporal directions [17].Let a and aT denote the spacelike 

and timelike lattice spacings respectively. The asymmetry 

parameter is given by : 
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In order to regain euclidean invariance in the continuum 

limit one now requires different couplings for the spatial 

and temporal plaquettes. The action is given by : 

s = -~~ ~~~~j +P,i~i+h,~~ ..‘(/2~ 

x i>j =I i 'I 

where P.. and Poi 
13 

denote the standard spacelike and timelike 

plaquettes respectively. The continuum limit is now defined 

by: 

a-30 , 5 FIXt3 

The absence of renormalisation of the velocity of light in 

the extreme scaling region imposes a relationship between 

the two bare couplings Bu(a,c) and B,(a,<). In the weak 

coupling limit one obtains : 

p, (h, 5) = 3 ;'@j + $- c&J + oh& 
& 

g2E(a 
on a 

been 

Ref.[ 

1 is the "euclidean" bare coupling,i.e. the coupling 

symmetric lattice. The functions c,(c) and c,(s) have 

calculated in weak coupling perturbation theory in 

171. 
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Consider the above theory defined in a periodic box 

with L lattice sites in each direction. The physical 

spatial and temporal sizes of the box are La and La, 

respectively. Thus, for sufficiently large 5 the time 

extent is much smaller the spatial extent. In the limit 

U+O, L+m, with 5 and La, fixed this describes a finite 

temperature theory with the physical temperature given by : 

Tz L;i = & * ” * (W 
2 

It is easy to write down a hot TEK model which is 

equivalent to the above theory at N==. This is simply 

descibed by the partition function: 

z= 3;! dUr ““&(IBcrS,t/$Sc,l 

where 

s,- -, ifI z’j ti cq-oj u; uj”, c kc. “>J’=/ ,*(,$., 

& = - 5 -foi &(u,u;u~u~J~~.c. 

The 2 
?JV 

's are the same as in equations (6) and (7). The 

equivalence Of the above model with the field theory is 

established in a manner entirely analogous to that of 

Ref.[l41. 
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The correspondence between the variables of the field 

theory and the reduced model are the same as in eqn.(8). In 

particular, the thermal Wilson line is given by : 

(WL) = + pe < * (Jo’) - * ~06l 
rls 

Bjj construction, L is the smallest integer for which Tr(Uo)L 

is nonzero. The energy density may be also obtained by 

applying the reduction prescription to the corresponding 

expression in the field theory 1181. In the weak coupling 

limit one has : (a, 

f 5 4 f(,-$7 - &- 1,s; q w-w~~~~J q/P) 

- s”T &; tf o-43 v,c/dqT.ql 
i 

We have performed Monte Carlo simulations of 'the hot 

TEK model with asymmetric couplings for N=16 and 

5=1.5,1.75,2.0,3.0 and 4.0. For a given 5 we scan over 

various values of 92E. The couplings $, and 8, are 

calculated from 
4 

using equation (13) above. This ensures 

that in the scaling limit one is describing the continum 

physics oE gauge fields with the physical temperature given 

by eqn.(14) (for L=m). In practice, only the leading terms 

have been retained in eqn.(13). The functions c,(c) and 

CT (5) were obtained from the results of Ref.[17] for each 

value of 5 separately. 
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The Metropolis updating procedure is described in 

Ref.1121. Figure (2) shows the total action defined by : 

0 s =tv -!- Re <p~v zp4v Tf (UpU,+f~~,> -*(IF-J 

and the Wilson line averages for N=16 andx=1.5 for various 

values of P E/N between 0.25 and 0.45. (Runs at much smaller 

and larger couplings were also made : they demonstrated good 

agreement with the results of lowest order strong and weak 

coupling expansions at the respective ends.) The data shows 

that there is a sharp discontinuity in the action atPE/N = 

0.35. This is the bulk transition. The amount of 

discontinuity is about half that at$=l (141 - indicating 

that the bulk transition gets weaker for larger 2. The 

Wilson line jumps from 0 to about 0.47 at the same value of 

the coupling, showing that the bulk transition is inducing 

spurious deconfinement. All the points are averages over 

typically 1000 sweeps starting from an ordered 

configuration. In Figure (3) we show the same quantities 

for s=1.75, with runs starting from both ordered and 

disordered configurations. ,The discontinuity of the action 

has now turned into a crossover - in all cases the action 

converged to the same value for both hot and cold runs. The 

Wilson line, however, jumps from zero to about 0.45 at 

P = E/N 0.36 indicating a sharp first order transition. Figure 

(4) we show the action and Wilson line for N=16, .$=2. The, 

action is now smooth - the Wilson line jumps at P E/N=0.325. 
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In Figure (5) we show the history of the Wilson line at this 

coupling. Each point is a block average over five sweeps. 

There is a clear two-state signal with dramatic tunnelling 

between the ordered and discordered states. Such a 

behaviour is typical of a first order transition. The 

absence of a bulk transition has been checked by making hot 

and cold runs - no hysteresis was observed. Figures (6) and 

(?I show the action and Wilson lines for 5=3 and 5=4 

respectively. In both cases there is no evidence for a 

first order bulk transition. The Wilson line continues to 

show a discontinuous jump at 6E/N=8.26 for 5=3 and 8E/N=8.21 

for 5=4. 

The central result of this paper is that by a different 

parametrisation of the action, viz. by having a 

sufficiently asymmetric lattice, it is possible to get rid 

of the unphysical first order bulk transition. It is not 

clear how the value of 5 above which there is no bulk 

transition depends on N. We are now studying the N=25,36 

and 49 models to determine this. It is possible that as we 

go higher up in N one needs a higher value of 5 to avoid the 

bulk transition. Even if that is true,we have a better 

chance of pushing the critical coupling for deconfinement 

into the scaling region simply because 5 is a continuously 

adjustable parameter, and that N is much less restricted in 

the symmetric twist TEK than in the asymmetric twist TEK. 

We do not know whether the critical coupling we obtained 

from 5=1.75 runs is in the scaling region; we 
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hope,however,that the higher N runs we are doing shall 

provide a more definitive answer to the question of scaling. 

Nevertheless, the fact that the Wilson line jumps 

without being affected by any bulk transition for values of 

5 greater than 1.75 strongly indicates that the 

deconfinement transition at N=m is first order. It remains 

to be seen whether this conclusion is valid when we can work 

deep into the scaling region. These questions shall be 

addressed, fortified with larger N data, in a forthcoming 

communication. 

The disappearance of the bulk transition in an 

asymmetric lattice by itself is an interesting phenomenon 

and deserves further study even for regular small N 

theories. It might throw some light on the way couplings 

flow under a renormalisation group transformation (in 

particular, do these flows avoid the bulk transition by 

going up along the 5 axis ?) and hence on the nature of the 

continum limit of gauge theories. 
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FIGURE CAPTIONS 

Fig. 1: Dyson-Schwinger equations for the mixed action 

theory. 

Fig. 2: Total action and Wilson line for N=16,5=1.5 

Fig. 3: Total action and Wilson line for N=16,5=1.75 

Fig. 4: Total action and Wilson line for 

N=16,c=Z.O.Crosses are runs with ordered starts, 

dots with disordered starts. The dashed lines 

represent results from lowest order strong and 

weak coupling expansions. 

Fig. 5: History of the Wilson line for N=16, 5=2 at 

BE/N=0.325. Each point is an average over five 

sweeps. 

Fig. 6: Total action and Wilson line for N=16, 5=3. 

Fig. 7: Total action and Wilson line for N=16, 5=4. 
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